Dynamics and Kinetics. Solutions to training problems

Problem 1

a) True.
b) True.

c) False. This is only true for an elementary step.

d) False. This is only true for an elementary step.

e) True. The rate constant has units of (&ime)~!(concentration)=n=1) where 7 is the order of

the reaction.

Problem 2

(a)

(b) Sequential method:
(1) [4]: a(t) = ag e~ k1 +13)
db B

(2) [B N E + kob = kja

1) Homogeneous eq.

Solution :

2) Variation of constants:

A"
C
da
E = (kl + kg)a
db
% = +k'1(l — kzb
ij—; = +A?3a + I\Zb
(1st order)
db
I + kob =0
b(ﬁ = [;e—th



S

1l

T
=<
S

db db

T + kob = (E — kab+ k’2l~7)6_k2t = kyage (kitha)t
db - -
% — klaoe (k1+kz—ko)t
5@)23____j@5L__64h+m—mn
ki + ks — ko
Att=0,b=0=>5=0:
7 agky —(k1+ks—ko)t
[ e 1 _ 1 3 2
O ey sy S )
b(t) = ao—kl(ewzt e~ Untka)ty
ki + ks — ko

3) Since bo = ¢o = 0, conservation of mass gives
(t) = ao+ bo+ co— alt) — b(t) = a0 — a(t) —
b
After simplification,

1
= 1 — —— —kot ka — k —(k1+k3)t
c(t) a,o{ ki + ks — ko ke +( 3 2)e ] )

Problem 3

Consider the reaction
A+B=E+EF

which occurs in two steps. At equilibrium, the processes are occurring at equal rates in the forward
and reverse directions:

(WA+B= C+D
2 C+D= E+F

Thus, at equilibrium:

ki[A][B] = k[ C][D],

ka[C][D] = ko[ E][F].

The equilibrium constant for each reaction is thus:



eqa k_i

The equilibrium constant for the overall reaction is

_ (EIF]N _ kiko
K= ([A][B])eq =Kk =

Example:
H,+ 2IC1 = I, + 2HCI,

which occurs in two steps. At equilibrium the following processes are occurring at equal rates in the
forward and reverse directions:

(1) Hy+ICl= HI + HC,

(2) HI+ICl = HCl + I,

Thus, at equilibrium:

ki [He] [ICI] = &= [HI][HCI],

ks [HI][ICI] = k—o[HCI][I].

The equilibrium constant for each reaction is thus:

[HI] [HCI]) ky

K= ( [Ho][ICY] /eq

eq k_l,

_ ([HCI][IQ]) _ ko

2= \[H[IC]] koo

The overall equilibrium constant is

o EOPLN
K = ([ i0m). =K1K =

ky ko
k_1k_o




Problem 4

Given is the following reaction sequence.

k., B -k
AT D
o~

1 2

a) Derive the time-dependent concentrations of A, B, and C, assuming that all initial concentrations
are zero apart from that of A.

For species A,
d I
—— = (ks + kDI[A]

[A] = [A]Oe—(k1+k{)t

For species B,

We substitute [A] to obtain

d[B]
dt

= ky [Alge (KD — K, [B]
The solution of the homogeneous differential equation is

[B]n = bpe~*2*
and the general solution of the inhomogeneous differential equation therefore

[B] = c(t)e ¥zt
Substitution into the differential equation yields

é(e ket =k, [A]Oe—(k1+k{)t
¢(0) = ky[Alge~ kiRt

and upon integration

ki[Alo '
c(t) =cn + ——— - e—(k1+k1—k2)t
() =co ko — (ky + k)

so that



k [A]O !
B] = cje ket + — -0 - e~ (kitk)t
[B] = co ky — (k) + k1)

With [B], = 0, we find

[B] = k1[Alo (e—(k1+k{)t _ e—kzt)
ky — (k) + kp)
By analogy,
ki[Alo , :
=— " > (e~ (it+kDt _ p=kat
= e +mp ¢ o)

b) Explain how one can simply calculate the time-dependent concentration of D from the results
obtained above. Just describe the approach without actually calculating it.

X Problem 5

Steps to find [4];and [B]:

1. Rate equations (for simplicity [4] = a and [B] = b):

da _
i X —
b g kb v=b (ma)
2. Put in matrix form:
d -k k- >
—X=M-X M = <
dt where ki =k

3. Find eigenvalues:
0 =det(M — Ad) = (k1 + k-1 + A) — kik-1 = 2+ (k1 + k=14
=0 Jo=—(k1+ k—1)
4. Find eigenvectors vi and vz for A1 and s respectively:

Fordj=0: (M—Xd)-vi=(M-xd) (:;) =0

k_y
choose vy =1: —kvn+k_1=0 = v1=— = v1=<’°1)

For o= —(k1 + k1) :



v1 _ k_l k—l V1 _ _ 1
(M — \d) (w) = <k1 k1) <v2) 0 > va- (_1)
5. General solution:
k—1
- 1
X(t) = civieM + cpvae™ = ¢ ( kll ) +c2 ( > e~ (kitk-1)t

-1

6. Considering initial conditions:

Fort=0 = X(O)_<“°>

0
k_ aok
“ (’f_11> ta=da = A== i 1;_1
1+ (—c2) =0

7. Final result:

k1 4+ k_q
b(t) G/Okl (1 — ef(kl‘i’k—l)t)
k1+k_y
8. Check at ¢ — o0: ank

0k—1

Ueq = at = 00) = o
aokt

beq = b(t = 00) = T

X Problem 6

Describe an algorithm (no need to write proper code) to simulate the reaction 2A — products
with the stochastic method.

We know that reactions between two A molecules out of a total of n occur at the rate
R = —kn?

In fact, we have made a small mistake here when we did not consider that a molecule cannot
react with itself. Therefore, more accurately,

R=—-kn(n—-1)

The probability for a reaction to occur in a short time interval At is therefore



kn(n — 1)At
and the probability for no reaction is
1—kn(n—-1)At

We calculate the probability P, (t + At) that at time T 4+ At, all n molecules have not reacted.
This is the product of the probability B, () that at time T, none had reacted and the probability
that no reaction occurs in the time interval At.

P, (t + A1) = P,(v)(1 — kn(n — 1)Ar1)
We thus obtain a differential equation for P,

dP,
E = —kn(n — 1)Pn

which upon integration gives an expression for the probability that for n molecules of A, none
have reacted after a given time T

P = e—kn(n—l)‘r
n

We initially set the number of molecules to n = ny and the time to t = 0. We then have the
computer calculate a random number 7 in the interval between 0 and 1 and set

r=P, = e kn(n-1)t

so that

In(r)
 kn(n—-1)
This way, we randomly determine the time interval T at which the next reaction occurs. We
increment the time by this value T and reduce the number of molecules n by two. Then we

repeat.

The following matlab code will do the trick.

% stochastic method for solving second order rate equation

for1=1:6
set(figure(l) ,'WindowStyle','docked"); clf;
end

clc; clearvars;

n0 = 1e3; % number of molecules at t0
k = 1; % bimolecular rate constant

t = 0; % vector of time steps



n = n0; % vector of corresponding number of molecules n
while n > 0 % repeat until all molecules have reacted

% calculate next time step dt from random number 'rand'

dt = -log(rand)/k/(n(end)*(n(end)-1));

t = [t; tlend) + dt]; % add new time step to vector t

n = [n; n(end) - 2]; % add new number of molecules to vector n
end

figure(1); hold on
plot(t, n); % plot result of simulation
xlabel('time'); ylabel('number of molecules')

%o for comparison, plot analytical solutions for second order rate equation (just for fun)
t = linspace(0, t(end), le4);

plot(t, n0./(1 + 2*n0*k*t)
plot(t, n0./(n0 + (1-n0¥exp(-2#k*)

Problem 7

Use Arrhenius formula

3]
>
K

o0

- L_Llnkj:%Inmlmol*:m kJ - mol™!

Problem 8

(a) Following solution of problem 1, we have that

R k1 8.314 , ( 2.8 x 1073

Eo=g—7 = —2
I L'k 1.38 x 10

S S
323.15 303.15
(b) From the Arrhenius equation it straightforwardly follows that

kj = Ae BalRTi o A = k;eBa/RTi 0 j=1,2.

Let us compute 4 from k1, 71:

65000 J - mol™!
8.314 J - K~'mol~1303.15K

A=28x10"° M Istexp (

As a check we can also compute A from ko, 7>

65000 J - mol~!
8.314 J- K1mol™1323.15K

©) A=138x10"2 M s texp (

which of course has to agree.

) J-mol™! =65 kJ - mol 1.

) =444 x 108 M~ 1571,

) =444 x 108 M~ 171



Problem 9

Michaelis-Menten equation:

Umazx

v =
Ky

Equation for the Lineweaver-Burk plot:
1 1 Ky 1

v Umazx Umax [S]

From the original data:

1/[S] (M) 20 60 | 100 | 200 | 500
1/v 0.06 | 0.08 | 0.10 | 0.15 | 0.30
(min/mm?3)
By eye:
1 = 0.05 min - mm 3
vmaz
Ifni = % min - mm 3 - M
Therefore:
~0.05/100,

More generally: Use linear regression, e.g. in Mathematica or Matlab.

Problem 10

The only “hard part” about this problem is: “What is the standard temperature?” Using the
IUPAC standard, 7= 0°C = 273.15K, and

3RT \/3 x 8.314 x 273
* Urms = =
N2 My, 0.02802 1g-1 = 498ms,
) 3RT \/3 x 8.314 x 273
2 ¢ Urms — =
H M 0.002016 -1 = 1838ms!.

If we used the NIST standard instead, 7 = 20°C = 293.15K, and

N2 :orms = 51 1ms™],
H2 : orms = 1904ms™1 .



Problem 11

Recall from lecture:
plv) o _ p

- S
AksT ™~ 2rmkpT °

Amass pSo
.. =mZlg-S)=m——2—
(a) Loss of mass per unit time: A? 5700 V2rmkpT

1
rate of escape= Zs - So = ZC<U>50 =

Pressure:

/27rkBT Amass 1 /2RT Amass 1
M

(b) T=1273K
_ 2x8314%x1,273m4.3 x 10_8kg 1 - _3
P= \/3.14 XT3x10% s 72005 (5x 10 tm)? (0 x 10 "Pa
Problem 13
The mechanism 1is:
A+ A % A+ A
A+ Bop
Recall from lecture:
=
L+ k_lz[A] 6
kok
kL = kQ_]‘l
1 (7)
Substituting the expression (7) in @:
R ®)

Rearranging:

KL oy ke (kL
P R o B -1 A

kl
and since kL 0.8 when [4A] = 10*M:



Problem 14

K=25x10%*s-tat 1.3 kPa
K=21x10%s-lat12 Pa

Inverting Eq. (8)) from problem 2 and considering% =L

RT
1 1 1 1 RT
Kkl k éo kgone [A] Aéo kSOmC Py 9)
For two different pressures:
1 1 1 Ap-
A— = RTA— k"¢ = RT—32 = RTKY™
kl k&‘ODC PA = 1 Akil 1
k_press .
And we can compute 1 25
1 1
kIl)I‘esS — 113001321 - 12Pa1 — 19 % 10—6 Pa_ls_l

25x10=4s—1 = 2.1x10—5s~1!

Problem 15

The RRK rate constant is given by

E—Eyn"*
@ (555
where v = v, = 5.19 - 102 Hz is the frequency of the critical mode, E = hvy,, - Ny =
44.7 kJ/mol is the internal energy of the molecule, which we can equate to the photon energy,
and Ey = 13.2 kJ/mol is the dissociation energy of the molecule. Water dimer has s = 3N —
6 = 12 vibrational degrees of freedom.

We obtain
k(E) = 5.19 - 1012 (44'7 _ 13'2)11 =1.10 - 1011
- 447 o
and a lifetime of
-1 905
T= KE) ps



X Problem 16

The partition function of a spin in a magnetic field B is given by

q= e—Eo/kBT +€—€1/kBT — e—f—uBB/kBT + e—,u,BB/kBT

zo Z1

The populations of the two states (i.e., the probabilities to be in the two states) can be
expressed in terms of xp and x1 as

Lo Lo
P = (N = — = s
b = (o) q ro + 21
x I

q TotT1,

from which it follows, as it should, that Py + P; = 1.

(If one considered N spins, the total populations of the two states would be (ng) = NPy and
(n1) = NP).

The populations of the two states in a magnetic field of 1 T at temperatures 4 K and 298 K
are summarized in the following table

T=4K | T=
298K
g | 2.028 | 2.00001
Py | 0583 0501
P | 0417 | 0.499

X Problem 17

We know from the class that the translational partition function is given by

2mm 3/2
Qtr = (W) V.

In order to compute the isotope effect on it for molecules Ho and D2 we just evaluate the
following ratio (conventionally, the quantity for H is in the numerator)

Gtr (HZ) (mHz ) o 3/2
IE,. = = ~(1/2 ~ 0.354.
qtr qtr(DZ) sz ( / )



X Problem 18

(a) O21s a symmetric molecule so the symmetry number s = 2. In SI units, B = 145m~!. The
number of thermally accessible rotational states 1s

1kgT kg7 1 1.38 x 10723 x 298 J

ot = — = == =T1.3.
Tot = SheB T 2heB  26.63 x 1034 x 3 x 108 x 145 J
(b) Recall that the vibrational partition function is
671/2
Qtvib = 1— ez,
where
hv hic 6.626 x 10734 x 1.58 x 10° x 3 x 108 J
z = ~ 7.64.

~ kgT kT 1.38 x 1023 x 208 J

In our case ¢vin = 0.0219. However, the number of thermally accessible vibrational states is
obtained as a par ¢vib1 function in which the zero point energy is subtracted from each
En = En—E0-

Hence the number of thermally accessible vibrational states 1s

Qvib = = 1.0005

l—e7

X Problem 19

gsr,v for Ho at 25°C:

<2me2kBT)3/2 (271’ X 2 x 1.67 x 10727 x 1.38 x 10723 x 298
v =|—%— =

3/2
-3 30, —3
m ° =2.75x%x 10""m
h2 (6.63 x 10-34)2 )

grot for H¥Cl at 25°C: mond = 127.4 pm

VkpT  12IkpT
sheB s h2

Qrot =

h

. I R
symmetry number s = 1, moment of inertla= 17, i = 5=

reduced mass:

_ MT,HMT,CI m N1X35m _3_5m
T Myp+M.a © 1435 ¢ 36

8mu?kpT 8w x 33 % 1.66 x 10727 x (1.274 x 10719)% x 1.38 x 10723 x 298
ot =T T (6.63 x 10-31)2

=19.3



Qvip of I; at 25°C:

e—%/2
Qvib = 1—e=
he  6.63 x 10734 x 3 x 10% x 214.6 x 102
= h U —= = - 1.
@ 1= Bhet = 1o 1.38 x 10-23 x 298] 038
e—%/2
Qvib = m = 0.922

Number of thermally accessible vibrational states (as in Problem 18):

1

o =155

QVib =



