
Dynamics and Kinetics. Solutions to training problems 

 

Problem 1 

a) True. 

b) True. 

c) False. This is only true for an elementary step. 

d) False. This is only true for an elementary step. 

e) True. The rate constant has units of (time)−1(concentration)−(n−1) where n is the order of 
the reaction. 

 
Problem 2 
 
(a) 

 
 
 
 
 

 

 
 

 

(b) Sequential method: 

(1) [A]: a(t) = a0 e – (k1 + k3)t   (1st order) 

(2) [B : !"
!#

 + k2b = k1a 

1) Homogeneous eq. 

!"
!#

 + k2b =0 

Solution : 

 b(t) = b̃e -k2t 

2) Variation of constants: 



b̃ ≡ b̃ (t) 
 

 

 

 

At t = 0,b = 0 ⇒ b̃ = 0 : 

 

 

3) Since b0 = c0 = 0, conservation of mass gives 
c(t) = a0 + b0 + c0 − a(t) − b(t) = a0 − a(t) − 
b(t) 
After simplification, 

. 
 
 

Problem 3 
 

Consider the reaction 
A + B ⇌ E + F, 

 
which occurs in two steps. At equilibrium, the processes are occurring at equal rates in the forward 
and reverse directions: 

(1) A + B       C + D 
(2) C + D       E + F 
 

Thus, at equilibrium: 

k1[A][B] = k−1[C][D], 

k2[C][D] = k−2[E][F]. 

The equilibrium constant for each reaction is thus: 



 

 

The equilibrium constant for the overall reaction is 

 

Example: 

H2 + 2ICl ⇌ I2 + 2HCl, 
 

which occurs in two steps. At equilibrium the following processes are occurring at equal rates in the 
forward and reverse directions: 

(1) H2 + ICl ⇌ HI + HCl, 
 

(2) HI + ICl  ⇌ HCl + I2. 
 
 
Thus, at equilibrium: 

k1[H2][ICl] = k−1[HI][HCl], 

k2[HI][ICl] = k−2[HCl][I2]. 

The equilibrium constant for each reaction is thus: 

  

 
 
The overall equilibrium constant is 

 
 
 
 
 
 
 



Problem 4 

 
Given is the following reaction sequence. 

 

 
 
a) Derive the time-dependent concentrations of A, B, and C, assuming that all initial concentrations 
are zero apart from that of A.  
 
For species A, 
 

𝑑[A]
𝑑𝑡

= −(𝑘$ + 𝑘1
%)[A] 

 
[A] = [A]0𝑒&((1)(1

!)# 
 
 
For species B, 
 

𝑑[B]
𝑑𝑡

= 𝑘1[A] − 𝑘+[B] 
 
 
We substitute [A] to obtain 
 

𝑑[B]
𝑑𝑡

= 𝑘1[A],𝑒&((1)(1
!)# − 𝑘+[B] 

 
The solution of the homogeneous differential equation is 
 

[B]- = b0𝑒&("# 
 
and the general solution of the inhomogeneous differential equation therefore 
 

[B] = 𝑐(𝑡)𝑒&("# 
 
Substitution into the differential equation yields 
 

𝑐̇(𝑡)𝑒&("# = 𝑘1[A],𝑒&((1)(1
!)# 

 
𝑐̇(𝑡) = 𝑘1[A],𝑒&((1)(1

!&(")# 
 
and upon integration 
 

𝑐(𝑡) = 𝑐, +
𝑘$[A],

𝑘+ − (𝑘1 + 𝑘1
%) 𝑒

&((1)(1
!&(")# 

 
so that 
 

A
k1

k1’

k2

k2’
D

B

C



[B] = 𝑐,𝑒&("# +
𝑘$[A],

𝑘+ − (𝑘1 + 𝑘1
%) 𝑒

&((1)(1
!)# 

 
With [B], = 0, we find 
 

[B] =
𝑘$[A],

𝑘+ − (𝑘1 + 𝑘1
%) 2𝑒

&((1)(1
!)# − 𝑒&("#3 

By analogy, 
 

[C] =
𝑘$% [A],

𝑘+% − (𝑘1 + 𝑘1
%) 2𝑒

&((1)(1
!)# − 𝑒&("! #3 

 
 
b) Explain how one can simply calculate the time-dependent concentration of D from the results 
obtained above. Just describe the approach without actually calculating it.  
 
 

[D] = [A], − [A] − [B] − [C] 
 
 
X Problem 5 

 

Steps to find [A]t and [B]t: 

1. Rate equations (for simplicity [A] = a and [B] = b): 

 

2. Put in matrix form: 

  where  

3. Find eigenvalues: 

                          0 = det(M − λId) = (k1 + λ)(k−1 + λ) − k1k−1 = λ2 + (k1 + k−1)λ 

 λ1 = 0; λ2 = −(k1 + k−1) 

4. Find eigenvectors v1 and v2 for λ1 and λ2 respectively: 
 

 For λ1 = 0 :  
 

 

For λ2 = −(k1 + k-1) : 



 

5. General solution: 

 

6. Considering initial conditions: 
 

For 

 
  
  ⟹ 
 
 
7. Final result: 

 

 

8. Check at t → ∞: 
 
 
 
 

 
 
X Problem 6 

 
Describe an algorithm (no need to write proper code) to simulate the reaction 2A → products 
with the stochastic method.  
 
We know that reactions between two A molecules out of a total of n occur at the rate 
 

𝑅 = −𝑘𝑛! 
 
In fact, we have made a small mistake here when we did not consider that a molecule cannot 
react with itself. Therefore, more accurately, 
 

𝑅 = −𝑘𝑛(𝑛 − 1) 
 
The probability for a reaction to occur in a short time interval Δ𝜏 is therefore  



 
𝑘𝑛(𝑛 − 1)Δ𝜏 

 
and the probability for no reaction is 
 

1 − 𝑘𝑛(𝑛 − 1)Δ𝜏 
 
We calculate the probability 𝑃"(𝜏 + Δ𝜏) that at time 𝜏 + Δ𝜏, all n molecules have not reacted. 
This is the product of the probability 𝑃"(𝜏) that at time 𝜏, none had reacted and the probability 
that no reaction occurs in the time interval Δ𝜏. 
 

𝑃"(𝜏 + Δ𝜏) = 𝑃"(𝜏)(1 − 𝑘𝑛(𝑛 − 1)Δ𝜏) 
 
We thus obtain a differential equation for 𝑃" 
 

𝑑𝑃"
𝑑𝜏 = −𝑘𝑛(𝑛 − 1)𝑃" 

 
which upon integration gives an expression for the probability that for n molecules of A, none 
have reacted after a given time 𝜏 
 

𝑃" = 𝑒#$"("#&)( 
 
 
We initially set the number of molecules to 𝑛 = 𝑛) and the time to 𝑡 = 0. We then have the 
computer calculate a random number 𝑟 in the interval between 0 and 1 and set 
 

𝑟 = 𝑃" = 𝑒#$"("#&)( 
 
so that  
 

𝜏 = −
ln(𝑟)

𝑘𝑛(𝑛 − 1) 

 
This way, we randomly determine the time interval 𝜏 at which the next reaction occurs. We 
increment the time by this value 𝜏 and reduce the number of molecules 𝑛 by two. Then we 
repeat. 
 
The following matlab code will do the trick. 
 
% stochastic method for solving second order rate equation 
  
for l = 1:6 
    set(figure(l) ,'WindowStyle','docked'); clf; 
end 
clc; clearvars; 
  
n0 = 1e3; % number of molecules at t0 
k = 1; % bimolecular rate constant 
  
t = 0; % vector of time steps 



n = n0; % vector of corresponding number of molecules n 
while n > 0 % repeat until all molecules have reacted 
    % calculate next time step dt from random number 'rand' 
    dt = -log(rand)/k/(n(end)*(n(end)-1)); 
    t = [t; t(end) + dt]; % add new time step to vector t 
    n = [n; n(end) - 2]; % add new number of molecules to vector n 
end 
  
figure(1); hold on 
plot(t, n); % plot result of simulation 
xlabel('time'); ylabel('number of molecules') 
  
% for comparison, plot analytical solutions for second order rate equation (just for fun) 
t = linspace(0, t(end), 1e4); 
plot(t, n0./(1 + 2*n0*k*t)) 
plot(t, n0./(n0 + (1-n0)*exp(-2*k*t))) 
 
 
 
Problem 7 

Use Arrhenius formula 
 
 
 
 
 
 

 

 
Problem 8 

(a) Following solution of problem 1, we have that 
 
 
 
 

(b) From the Arrhenius equation it straightforwardly follows that 

  
 
Let us compute A from k1, T1: 
 
 

As a check we can also compute A from k2, T2 

 (2) 

which of course has to agree. 



Problem 9 
 
Michaelis-Menten equation: 

 
Equation for the Lineweaver-Burk plot: 

 
From the original data: 

1/[S] (M-1) 20 60 100 200 500 

1/v 
(min/mm3) 

0.06 0.08 0.10 0.15 0.30 

By eye: 

 
Therefore: 

 
More generally: Use linear regression, e.g. in Mathematica or Matlab. 

 
 
Problem 10 

 

The only “hard part” about this problem is: “What is the standard temperature?” Using the 

IUPAC standard, T = 0◦C = 273.15K, and 

N ms−1 = 493ms−1, 

H ms−1 = 1838ms−1 . 

If we used the NIST standard instead, T = 20◦C = 293.15K, and 

N2 : vrms = 511ms−1, 

H2 : vrms = 1904ms−1 . 



Problem 11 

Recall from lecture: 
rate of escape  
 

(a) Loss of mass per unit time:  
Pressure: 

 

 
 

(b) T = 1273K 

 
 
 

Problem 13 
 
The mechanism is: 

 
Recall from lecture: 
 
 
 (6 

 
) 

 (7) 
 
Substituting the expression (7) in (6): 
 
 
 
 (8) 
Rearranging: 
 
 
 
 
 
 
and since           0.8 when [A]  = 10-4M: 
 
 

 



Problem 14 
 
 
k1 = 2.5 x 10-4 s -1 at 1.3 kPa 
k1 = 2.1 x 10-5 s -1 at 12 Pa 
 
Inverting Eq. (8) from problem 2 and considering "

*
 = +

,-
 

 
 
 (9) 

 
 
For two different pressures: 
 
 
 
 
And we can compute 
 
 

 

 

Problem 15 

 
The RRK rate constant is given by 
 

𝑘(𝐸) = 𝜈 9
𝐸 − 𝐸)
𝐸 :

.#&

 
 
where 𝜈 = 𝜈vib = 5.19 ⋅ 10&!	Hz is the frequency of the critical mode, 𝐸 = ℎ𝜈laser ⋅ 𝑁/ =
44.7		kJ/mol is the internal energy of the molecule, which we can equate to the photon energy, 
and 𝐸) = 13.2	kJ/mol is the dissociation energy of the molecule. Water dimer has 𝑠 = 3𝑁 −
6 = 12 vibrational degrees of freedom. 
 
 
We obtain 
 

𝑘(𝐸) = 	5.19 ⋅ 10&! ⋅ 9
44.7 − 13.2

44.7 :
&&

= 1.10 ⋅ 10&& 
 
and a lifetime of 
 

𝜏 =
1

𝑘(𝐸) = 9.05	ps 

 
 



X Problem 16 

The partition function of a spin in a magnetic field B is given by 

. 

The populations of the two states (i.e., the probabilities to be in the two states) can be 
expressed in terms of x0 and x1 as 

, 
from which it follows, as it should, that P0 + P1 = 1. 

(If one considered N spins, the total populations of the two states would be ⟨n0⟩	= NP0  and  
⟨n1⟩	 = NP1). 

The populations of the two states in a magnetic field of 1 T at temperatures 4 K and 298 K 
are summarized in the following table 

 T = 4K T = 
298K 

q 2.028 2.00001 
P0 0.583 0.501 
P1 0.417 0.499 

 

 

X Problem 17 

 
We know from the class that the translational partition function is given by 

 

In order to compute the isotope effect on it for molecules H2 and D2 we just evaluate the 
following ratio (conventionally, the quantity for H is in the numerator) 

 

 

 

 

 

 



X Problem 18 

 

(a) O2 is a symmetric molecule so the symmetry number s = 2. In SI units, B = 145m−1. The 
number of thermally accessible rotational states is 

  
 
 
(b) Recall that the vibrational partition function is 

, 

where 
  
 

In our case qvib = 0.0219. However, the number of thermally accessible vibrational states is 
obtained as a partition function   in which the zero point energy is subtracted from each 
energy, i.e.,   
                        Hence the number of thermally accessible vibrational states is 

. 

X Problem 19 
 
 
 
 
 
qrot for H35Cl at 25◦C: rbond = 127.4 pm 

 

 
symmetry number s = 1, moment of inertia 

reduced mass: 
 

 
 

 
 



qvib	of	I2	at	25◦C:	 

 
 

Number of thermally accessible vibrational states (as in Problem 18):  

 
 
 
 
 
 
 
 
 
 
 
 


