Dynamics and Kinetics. Solutions to training problems

Problem 1

- a) True.
- b) True.
- c) False. This is only true for an elementary step.
- d) False. This is only true for an elementary step.
- e) True. The rate constant has units of $(time)^{-1}(concentration)^{-(n-1)}$ where n is the order of the reaction.

Problem 2

(a)

$$\frac{da}{dt} = -(k_1 + k_3)a$$

$$\frac{db}{dt} = +k_1 a - k_2 b$$

$$\frac{dc}{dt} = +k_3a + k_2b$$

- (b) Sequential method:
- (1) [A]: $a(t) = a_0 e^{-(k1 + k3)t}$

(1st order)

$$(2) [B: \frac{db}{dt} + k_2b = k_1a]$$

1) Homogeneous eq.

$$\frac{db}{dt} + k_2b = 0$$

Solution:

$$b(t) = \tilde{b}e^{-k_2t}$$

2) Variation of constants:

$$\tilde{b} \equiv \tilde{b}(t)$$

$$\frac{db}{dt} + k_2 b = (\frac{d\tilde{b}}{dt} - k_2 \tilde{b} + k_2 \tilde{b})e^{-k_2 t} = k_1 a_0 e^{-(k_1 + k_3)t}$$

$$\frac{d\tilde{b}}{dt} = k_1 a_0 e^{-(k_1 + k_3 - k_2)t}$$

$$\tilde{b}(t) = \tilde{b} - \frac{a_0 k_1}{k_1 + k_3 - k_2} e^{-(k_1 + k_3 - k_2)t}$$

At
$$t = 0, b = 0 \Rightarrow \tilde{b} = 0$$
:

$$\tilde{b}(t) = \frac{a_0 k_1}{k_1 + k_3 - k_2} (1 - e^{-(k_1 + k_3 - k_2)t})$$

$$b(t) = \frac{a_0 k_1}{k_1 + k_3 - k_2} (e^{-k_2 t} - e^{-(k_1 + k_3)t})$$

3) Since $b_0 = c_0 = 0$, conservation of mass gives

$$c(t) = a_0 + b_0 + c_0 - a(t) - b(t) = a_0 - a(t) - a(t)$$

b(t)

After simplification,

$$c(t) = a_0 \left\{ 1 - \frac{1}{k_1 + k_3 - k_2} \left[k_1 e^{-k_2 t} + (k_3 - k_2) e^{-(k_1 + k_3)t} \right] \right\}.$$

Problem 3

Consider the reaction

$$A + B \rightleftharpoons E + F$$
.

which occurs in two steps. At equilibrium, the processes are occurring at equal rates in the forward and reverse directions:

$$(1)A + B \rightleftharpoons C + D$$

$$(2) C + D \rightleftharpoons E + F$$

Thus, at equilibrium:

$$k_1[A][B] = k_{-1}[C][D],$$

$$k_2[C][D] = k_{-2}[E][F].$$

The equilibrium constant for each reaction is thus:

$$K_1 := \left(\frac{[C][D]}{[A][B]}\right)_{\text{eq}} = \frac{k_1}{k_{-1}}$$

$$K_2 := \left(\frac{[E][F]}{[C][D]}\right)_{\text{eq}} = \frac{k_2}{k_{-2}}$$

The equilibrium constant for the overall reaction is
$$K:=\Bigl(\frac{[E][F]}{[A][B]}\Bigr)_{\rm eq}=K_1K_2=\frac{k_1k_2}{k_{-1}k_{-2}}$$

Example:

$$H_2 + 2ICl \rightleftharpoons I_2 + 2HCl$$
,

which occurs in two steps. At equilibrium the following processes are occurring at equal rates in the forward and reverse directions:

- (1) $H_2 + ICl \rightleftharpoons HI + HCl$,
- (2) $HI + ICl \rightleftharpoons HCl + I_2$.

Thus, at equilibrium:

$$k_1[H_2][ICI] = k_{-1}[HI][HCI],$$

$$k_2[HI][ICI] = k_{-2}[HCI][I_2].$$

The equilibrium constant for each reaction is thus:

$$K_1 = \Big(rac{ ext{[HI][HCl]}}{ ext{[H_2][ICl]}}\Big)_{ ext{eq}} = rac{k_1}{k_{-1}},$$

$$K_2 = \left(rac{[ext{HCl}][ext{I}_2]}{[ext{HII}][ext{ICl}]}
ight)_{ ext{eq}} = rac{k_2}{k_{-2}}.$$

The overall equilibrium constant is

$$K := \Big(\frac{[\mathrm{HCl}]^2[\mathrm{I}_2]}{[\mathrm{H}_2][\mathrm{ICl}]^2}\Big)_{\mathrm{eq}} = K_1 K_2 = \frac{k_1 k_2}{k_{-1} k_{-2}}.$$

Given is the following reaction sequence.

$$A \xrightarrow{k_1} B \xrightarrow{k_2} D$$

a) Derive the time-dependent concentrations of A, B, and C, assuming that all initial concentrations are zero apart from that of A.

For species A,

$$\frac{d[\mathbf{A}]}{dt} = -(k_1 + k_1')[\mathbf{A}]$$

[A] = [A]₀
$$e^{-(k_1+k'_1)t}$$

For species B,

$$\frac{d[\mathbf{B}]}{dt} = k_1[\mathbf{A}] - k_2[\mathbf{B}]$$

We substitute [A] to obtain

$$\frac{d[B]}{dt} = k_1[A]_0 e^{-(k_1 + k_1')t} - k_2[B]$$

The solution of the homogeneous differential equation is

$$[\mathbf{B}]_h = b_0 e^{-k_2 t}$$

and the general solution of the inhomogeneous differential equation therefore

$$[B] = c(t)e^{-k_2t}$$

Substitution into the differential equation yields

$$\dot{c}(t)e^{-k_2t} = k_1[A]_0e^{-(k_1+k_1')t}$$

$$\dot{c}(t) = k_1 [\mathbf{A}]_0 e^{-(k_1 + k_1' - k_2)t}$$

and upon integration

$$c(t) = c_0 + \frac{k_1[A]_0}{k_2 - (k_1 + k_1')} e^{-(k_1 + k_1' - k_2)t}$$

so that

[B] =
$$c_0 e^{-k_2 t} + \frac{k_1 [A]_0}{k_2 - (k_1 + k'_1)} e^{-(k_1 + k'_1)t}$$

With $[B]_0 = 0$, we find

[B] =
$$\frac{k_1[A]_0}{k_2 - (k_1 + k_1')} \left(e^{-(k_1 + k_1')t} - e^{-k_2 t} \right)$$

By analogy,

[C] =
$$\frac{k_1'[A]_0}{k_2' - (k_1 + k_1')} \left(e^{-(k_1 + k_1')t} - e^{-k_2't} \right)$$

b) Explain how one can simply calculate the time-dependent concentration of D from the results obtained above. Just describe the approach without actually calculating it.

$$[D] = [A]_0 - [A] - [B] - [C]$$

X Problem 5

Steps to find $[A]_t$ and $[B]_t$:

2. Put in matrix form:

$$\frac{d}{dt}X = M \cdot X$$
 where $M = \begin{pmatrix} -k_1 & k_{-1} \\ k_1 & -k_{-1} \end{pmatrix}$

3. Find eigenvalues:

$$0 = \det(M - \lambda \mathbf{Id}) = (k_1 + \lambda)(k_{-1} + \lambda) - k_1 k_{-1} = \lambda^2 + (k_1 + k_{-1})\lambda$$
$$\lambda_1 = 0; \qquad \lambda_2 = -(k_1 + k_{-1})$$

4. Find eigenvectors $\mathbf{v_1}$ and $\mathbf{v_2}$ for λ_1 and λ_2 respectively:

For
$$\lambda_1 = 0$$
: $(M - \lambda \mathrm{Id}) \cdot \mathbf{v_1} = (M - \lambda \mathrm{Id}) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$

choose
$$v_2 = 1: -k_1 v_1 + k_{-1} = 0 \implies v_1 = \frac{k_{-1}}{k_1} \implies \mathbf{v_1} = \begin{pmatrix} \frac{k_{-1}}{k_1} \\ 1 \end{pmatrix}$$

For $\lambda_2 = -(k_1 + k_{-1})$:

$$(M - \lambda \operatorname{Id}) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} k_{-1} & k_{-1} \\ k_1 & k_1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 \quad \Rightarrow \quad \mathbf{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

5. General solution:

$$X(t) = c_1 \mathbf{v_1} e^{\lambda_1 t} + c_2 \mathbf{v_2} e^{\lambda_2 t} = c_1 \begin{pmatrix} \frac{k_{-1}}{k_1} \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-(k_1 + k_{-1})t}$$

6. Considering initial conditions:

For
$$t = 0$$
 \Rightarrow $X(0) = \begin{pmatrix} a_0 \\ 0 \end{pmatrix}$
$$c_1 \begin{pmatrix} \frac{k_{-1}}{k_1} \end{pmatrix} + c_2 = a_0$$

$$c_1 + (-c_2) = 0$$
 \Rightarrow $c_1 = c_2 = \frac{a_0 k_1}{k_1 + k_{-1}}$

7. Final result:

$$a(t) = \frac{a_0 \left(k_{-1} + k_1 e^{-(k_1 + k_{-1})t}\right)}{k_1 + k_{-1}}$$
$$b(t) = \frac{a_0 k_1 \left(1 - e^{-(k_1 + k_{-1})t}\right)}{k_1 + k_{-1}}$$

8. Check at $t \to \infty$:

$$a_{\text{eq}} = a(t = \infty) = \frac{a_0 k_{-1}}{k_1 + k_{-1}}$$

 $b_{\text{eq}} = b(t = \infty) = \frac{a_0 k_1}{k_1 + k_{-1}}$

X Problem 6

Describe an algorithm (no need to write proper code) to simulate the reaction $2A \rightarrow \text{products}$ with the stochastic method.

We know that reactions between two A molecules out of a total of n occur at the rate

$$R = -kn^2$$

In fact, we have made a small mistake here when we did not consider that a molecule cannot react with itself. Therefore, more accurately,

$$R = -kn(n-1)$$

The probability for a reaction to occur in a short time interval $\Delta \tau$ is therefore

$$kn(n-1)\Delta\tau$$

and the probability for no reaction is

$$1 - kn(n-1)\Delta\tau$$

We calculate the probability $P_n(\tau + \Delta \tau)$ that at time $\tau + \Delta \tau$, all n molecules have not reacted. This is the product of the probability $P_n(\tau)$ that at time τ , none had reacted and the probability that no reaction occurs in the time interval $\Delta \tau$.

$$P_n(\tau + \Delta \tau) = P_n(\tau)(1 - kn(n-1)\Delta \tau)$$

We thus obtain a differential equation for P_n

$$\frac{dP_n}{d\tau} = -kn(n-1)P_n$$

which upon integration gives an expression for the probability that for n molecules of A, none have reacted after a given time τ

$$P_n = e^{-kn(n-1)\tau}$$

We initially set the number of molecules to $n = n_0$ and the time to t = 0. We then have the computer calculate a random number r in the interval between 0 and 1 and set

$$r = P_n = e^{-kn(n-1)\tau}$$

so that

$$\tau = -\frac{\ln(r)}{kn(n-1)}$$

This way, we randomly determine the time interval τ at which the next reaction occurs. We increment the time by this value τ and reduce the number of molecules n by two. Then we repeat.

The following matlab code will do the trick.

% stochastic method for solving second order rate equation

```
for l = 1:6
    set(figure(l) ,'WindowStyle','docked'); clf;
end
clc; clearvars;
```

n0 = 1e3; % number of molecules at t0 k = 1; % bimolecular rate constant

t = 0; % vector of time steps

```
\begin{split} n &= n0; \% \text{ vector of corresponding number of molecules } n \\ \text{while } n &> 0 \% \text{ repeat until all molecules have reacted} \\ \text{% calculate next time step dt from random number 'rand'} \\ \text{dt} &= -\log(\text{rand})/k/(n(\text{end})*(n(\text{end})-1));} \\ \text{t} &= [t; t(\text{end}) + \text{dt}]; \% \text{ add new time step to vector } t \\ \text{n} &= [n; n(\text{end}) - 2]; \% \text{ add new number of molecules to vector } n \\ \text{end} \end{split}
```

```
figure(1); hold on plot(t, n); % plot result of simulation xlabel('time'); ylabel('number of molecules')
```

```
% for comparison, plot analytical solutions for second order rate equation (just for fun) t = linspace(0, t(end), 1e4); plot(t, n0./(1 + 2*n0*k*t)) plot(t, n0./(n0 + (1-n0)*exp(-2*k*t)))
```

Use Arrhenius formula

$$\begin{split} k_1 &= A e^{-E_a/RT_1}, \qquad k_2 = A e^{-E_a/RT_2} \\ \frac{k_1}{k_2} &= e^{-\frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} \\ \ln\frac{k_1}{k_2} &= \frac{1}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right) E_a \\ E_a &= \frac{R}{\frac{1}{T_2} - \frac{1}{T_1}} \ln\frac{k_1}{k_2} = \frac{8.314}{\frac{1}{277} - \frac{1}{298}} \ln 40 \text{ J} \cdot \text{mol}^{-1} = 121 \text{ kJ} \cdot \text{mol}^{-1} \end{split}$$

Problem 8

(a) Following solution of problem 1, we have that

$$E_a = \frac{R}{\frac{1}{T_2} - \frac{1}{T_1}} \ln \frac{k_1}{k_2} = \frac{8.314}{\frac{1}{323.15} - \frac{1}{303.15}} \ln \left(\frac{2.8 \times 10^{-3}}{1.38 \times 10^{-2}} \right) \, \text{J} \cdot \text{mol}^{-1} = 65 \, \, \text{kJ} \cdot \text{mol}^{-1}.$$

(b) From the Arrhenius equation it straightforwardly follows that

$$k_j = Ae^{-E_a/RT_j} \Rightarrow A = k_j e^{E_a/RT_j}, \qquad j = 1, 2.$$

Let us compute A from k_1 , T_1 :

$$A = 2.8 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1} \exp\left(\frac{65000 \text{ J} \cdot \text{mol}^{-1}}{8.314 \text{ J} \cdot K^{-1} \text{mol}^{-1} 303.15 K}\right) = 4.44 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}. \tag{1}$$

As a check we can also compute A from k_2 , T_2

$$(2) \hspace{1cm} A = 1.38 \times 10^{-2} \; \mathrm{M^{-1} s^{-1}} \exp \left(\frac{65000 \; \mathrm{J \cdot mol^{-1}}}{8.314 \; \mathrm{J \cdot K^{-1} mol^{-1}} 323.15 K} \right) = 4.44 \times 10^8 \; \mathrm{M^{-1} s^{-1}},$$

which of course has to agree.

Michaelis-Menten equation:

$$v = \frac{v_{max}}{1 + \frac{K_M}{|S|}}$$

Equation for the Lineweaver-Burk plot:

$$\frac{1}{v} = \frac{1}{v_{max}} + \frac{K_M}{v_{max}} \frac{1}{[S]}$$

From the original data:

1/[S] (M ⁻¹)	20	60	100	200	500
1/v (min/mm³)	0.06	0.08	0.10	0.15	0.30

By eye:

$$\frac{1}{v_{max}} = 0.05 \text{ min} \cdot \text{mm}^{-3}$$

$$\frac{K_M}{v_{max}} = \frac{0.05}{100} \text{ min} \cdot \text{mm}^{-3} \cdot \text{M}$$

Therefore:

$$K_M = \frac{0.05/100}{0.05}$$
 M = 0.01 M

More generally: Use linear regression, e.g. in Mathematica or Matlab.

Problem 10

The only "hard part" about this problem is: "What is the standard temperature?" Using the IUPAC standard, T = 0 C = 273.15K, and

$$\begin{split} \mathbf{N}^2: v_{\rm rms} &= \sqrt{\frac{3RT}{M_{\rm N_2}}} = \sqrt{\frac{3\times 8.314\times 273}{0.02802}} \\ \mathbf{N} &= \sqrt{\frac{3RT}{M_{\rm N_2}}} = \sqrt{\frac{3\times 8.314\times 273}{0.002016}} \\ \mathbf{H}^2: v_{\rm rms} &= \sqrt{\frac{3RT}{M_{\rm H_2}}} = \sqrt{\frac{3\times 8.314\times 273}{0.002016}} \\ \mathbf{m} \mathbf{s}^{-1} &= 1838 \mathbf{m} \mathbf{s}^{-1}. \end{split}$$

If we used the NIST standard instead, $T = 20^{\circ}\text{C} = 293.15\text{K}$, and

$$N2 : vrms = 511 ms^{-1},$$

$$H2 : vrms = 1904ms^{-1}$$
.

Recall from lecture:

rate of escape=
$$Z_S \cdot S_0 = \frac{1}{4}c\langle v\rangle S_0 = \frac{p\langle v\rangle}{4k_BT}S_0 = \frac{p}{\sqrt{2\pi mk_BT}}S_0$$

(a) Loss of mass per unit time: $\frac{\Delta_{\rm mass}}{\Delta t} = mZ_S \cdot S_0 = m \frac{pS_0}{\sqrt{2\pi mk_BT}}$

Pressure:

$$p = \sqrt{\frac{2\pi k_B T}{m}} \frac{\Delta \text{mass}}{\Delta t} \frac{1}{S_0} = \sqrt{\frac{2RT}{\pi M}} \frac{\Delta \text{mass}}{\Delta t} \frac{1}{r^2}$$

(b) T = 1273K

$$p = \sqrt{\frac{2 \times 8.314 \times 1,273}{3.14 \times 73 \times 10^{-3}}} \frac{\text{m}}{\text{s}} \frac{4.3 \times 10^{-8} \text{kg}}{7200 \text{ s}} \frac{1}{(5 \times 10^{-4} \text{m})^2} = 7.3 \times 10^{-3} \text{Pa}$$

Problem 13

The mechanism is:

$$A + A \quad \stackrel{k_1}{\rightleftharpoons} \quad A + A^*$$

$$A^* \quad \stackrel{k_2}{\Longrightarrow} \quad P$$

Recall from lecture:

$$k^{1} := \frac{k_{2}k_{1}/k_{-1}}{1 + \frac{k_{2}}{k_{-1}[A]}} \tag{6}$$

$$k_{\infty}^{1} = \frac{k_2 k_1}{k_{-1}} \tag{7}$$

Substituting the expression (7) in (6):

$$k^{1} = \frac{k_{\infty}^{1}}{1 + \frac{k_{2}}{k_{-1}[A]}} \tag{8}$$

Rearranging:

$$\frac{k_{\infty}^{1}}{k^{1}} = 1 + \frac{k_{2}}{k_{-1}[A]} \quad \Rightarrow \quad \frac{k_{2}}{k_{-1}} = \left(\frac{k_{\infty}^{1}}{k^{1}} - 1\right)[A]$$

and since $\frac{k^1}{k_{\infty}^1}$ 0.8 when [A] = 10⁻⁴M:

$$\frac{k_2}{k_{-1}} = \left(\frac{1}{0.8} - 1\right) 10^{-4} \text{M}$$
$$= 2.5 \times 10^{-5} \text{M}$$

 $k^{I} = 2.5 \times 10^{-4} \text{ s}^{-1} \text{ at } 1.3 \text{ kPa}$ $k^{I} = 2.1 \times 10^{-5} \text{ s}^{-1} \text{ at } 12 \text{ Pa}$

Inverting Eq. (8) from problem 2 and considering $\frac{n}{V} = \frac{P}{RT}$

$$\frac{1}{k^1} = \frac{1}{k_\infty^1} + \frac{1}{k_1^{\text{conc}}[A]} = \frac{1}{k_\infty^1} + \frac{RT}{k_1^{\text{conc}}P_A}$$
(9)

For two different pressures:

$$\Delta \frac{1}{k^1} = \frac{1}{k_1^{\text{conc}}} RT \Delta \frac{1}{P_A} \quad \Rightarrow \quad k_1^{\text{conc}} = RT \frac{\Delta \frac{1}{P_A}}{\Delta \frac{1}{k^1}} = RT k_1^{\text{press}}$$

And we can compute k_1^{press} as:

$$k_1^{\text{press}} = \frac{\frac{1}{1300 \text{Pa}} - \frac{1}{12 \text{Pa}}}{\frac{1}{2.5 \times 10^{-4} \text{s}^{-1}} - \frac{1}{2.1 \times 10^{-5} \text{s}^{-1}}} = 1.9 \times 10^{-6} \text{ Pa}^{-1} \text{s}^{-1}$$

Problem 15

The RRK rate constant is given by

$$k(E) = \nu \left(\frac{E - E_0}{E}\right)^{s - 1}$$

where $v = v_{\rm vib} = 5.19 \cdot 10^{12}$ Hz is the frequency of the critical mode, $E = hv_{\rm laser} \cdot N_A = 44.7$ kJ/mol is the internal energy of the molecule, which we can equate to the photon energy, and $E_0 = 13.2$ kJ/mol is the dissociation energy of the molecule. Water dimer has s = 3N - 6 = 12 vibrational degrees of freedom.

We obtain

$$k(E) = 5.19 \cdot 10^{12} \cdot \left(\frac{44.7 - 13.2}{44.7}\right)^{11} = 1.10 \cdot 10^{11}$$

and a lifetime of

$$\tau = \frac{1}{k(E)} = 9.05 \text{ ps}$$

X Problem 16

The partition function of a spin in a magnetic field B is given by

$$q = e^{-\epsilon_0/k_{\rm B}T} + e^{-\epsilon_1/k_{\rm B}T} = \underbrace{e^{+\mu_{\rm B}B/k_{\rm B}T}}_{x_0} + \underbrace{e^{-\mu_{\rm B}B/k_{\rm B}T}}_{x_1}.$$

The populations of the two states (i.e., the probabilities to be in the two states) can be expressed in terms of x_0 and x_1 as

$$P_0 = \langle n_0 \rangle = \frac{x_0}{q} = \frac{x_0}{x_0 + x_1},$$

 $P_1 = \langle n_1 \rangle = \frac{x_1}{q} = \frac{x_1}{x_0 + x_1},$

from which it follows, as it should, that $P_0 + P_1 = 1$.

(If one considered \mathcal{N} spins, the total populations of the two states would be $\langle \mathbf{n}_0 \rangle = \mathcal{N}P_0$ and $\langle n_1 \rangle = \mathcal{N}P_1$).

The populations of the two states in a magnetic field of 1 T at temperatures 4 K and 298 K are summarized in the following table

	T = 4K	T =
		298K
q	2.028	2.00001
P_0	0.583	0.501
P_1	0.417	0.499

X Problem 17

We know from the class that the translational partition function is given by $q_{\rm tr}=\left(\frac{2\pi m}{\beta h^2}\right)^{3/2}V.$

$$q_{\rm tr} = \left(\frac{2\pi m}{\beta h^2}\right)^{3/2} V$$

In order to compute the isotope effect on it for molecules H_2 and D_2 we just evaluate the following ratio (conventionally, the quantity for H is in the numerator)

$$\mathrm{IE}_{q_{\mathrm{tr}}} = rac{q_{\mathrm{tr}}(\mathrm{H}_2)}{q_{\mathrm{tr}}(\mathrm{D}_2)} = \left(rac{m_{\mathrm{H}_2}}{m_{\mathrm{D}_2}}
ight)^{3/2} pprox (1/2)^{3/2} pprox 0.354.$$

X Problem 18

(a) O_2 is a symmetric molecule so the symmetry number s = 2. In SI units, B = 145m⁻¹. The number of thermally accessible rotational states is

$$q_{\text{rot}} = \frac{1}{s} \frac{k_{\text{B}}T}{hcB} = \frac{k_{\text{B}}T}{2hcB} = \frac{1}{2} \frac{1.38 \times 10^{-23} \times 298 \text{ J}}{6.63 \times 10^{-34} \times 3 \times 10^8 \times 145 \text{ J}} = 71.3.$$

(b) Recall that the vibrational partition function is

$$q_{tvib} = \frac{e^{-x/2}}{1 - e^{-x}},$$

where

$$x = \frac{h\nu}{k_{\rm B}T} = \frac{h\tilde{\nu}c}{k_{\rm B}T} = \frac{6.626 \times 10^{-34} \times 1.58 \times 10^5 \times 3 \times 10^8 \text{ J}}{1.38 \times 10^{-23} \times 298 \text{ J}} \approx 7.64.$$

In our case $q_{\text{vib}} = 0.0219$. However, the number of thermally accessible vibrational states is obtained as a par \tilde{q}_{vib} function—in which the zero point energy is subtracted from each $\tilde{\varepsilon}_n := \varepsilon_n - \varepsilon_0$.

Hence the number of thermally accessible vibrational states is

$$\tilde{q}_{\text{vib}} = \frac{1}{1 - e^{-x}} = 1.0005.$$

X Problem 19

 $q_{\rm tr,V}$ for H₂ at 25°C:

$$q_{\rm tr,V} = \left(\frac{2\pi m_{\rm H_2} k_{\rm B} T}{h^2}\right)^{3/2} = \left(\frac{2\pi \times 2 \times 1.67 \times 10^{-27} \times 1.38 \times 10^{-23} \times 298}{\left(6.63 \times 10^{-34}\right)^2}\right)^{3/2} {\rm m}^{-3} = 2.75 \times 10^{30} {\rm m}^{-3}$$

 $q_{\rm rot}$ for H³⁵Cl at 25°C: $r_{\rm bond}$ = 127.4 pm

$$q_{\rm rot} = \frac{1}{s} \frac{k_{\rm B}T}{h_{\rm c}R} = \frac{1}{s} \frac{2Ik_{\rm B}T}{\hbar^2}$$

symmetry number s=1, moment of inerta μr^2 , $\hbar=\frac{h}{2\pi}$

reduced mass:

$$\mu = rac{M_{r, ext{H}} M_{r, ext{Cl}}}{M_{r, ext{H}} + M_{r, ext{Cl}}} m_u pprox rac{1 imes 35}{1 + 35} m_u = rac{35}{36} m_u$$

$$q_{\rm rot} = \frac{8\pi^2 \mu r^2 k_{\rm B} T}{h^2} = \frac{8\pi^2 \times \frac{35}{36} \times 1.66 \times 10^{-27} \times \left(1.274 \times 10^{-10}\right)^2 \times 1.38 \times 10^{-23} \times 298}{\left(6.63 \times 10^{-34}\right)^2} = 19.3$$

 q_{vib} of I_2 at $25^{\circ}\text{C}\text{:}$

$$q_{\text{vib}} = \frac{e^{-x/2}}{1 - e^{-x}}$$

$$x := \beta h c \tilde{\nu} = \frac{h c \tilde{\nu}}{k_{\text{B}} T} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8 \times 214.6 \times 10^2 \text{J}}{1.38 \times 10^{-23} \times 298 \text{J}} = 1.038$$

$$q_{\text{vib}} = \frac{e^{-x/2}}{1 - e^{-x}} = 0.922$$

Number of thermally accessible vibrational states (as in Problem 18):

$$\tilde{q}_{\mathrm{vib}} = \frac{1}{1 - e^{-x}} = 1.55$$